
www.manaraa.com

How Machine Learning Has Been Applied in Software Engineering?

Olimar Teixeira Borges a, Julia Colleoni Couto b, Duncan Dubugras A. Ruiz c

and Rafael Prikladnicki1 d

School of Technology, PUCRS, Porto Alegre, Brazil

Keywords: Software Engineering, Machine Learning, Mapping Study.

Abstract: Machine Learning (ML) environments are composed of a set of techniques and tools, which can help in solving
problems in a diversity of areas, including Software Engineering (SE). However, due to a large number of
possible configurations, it is a challenge to select the ML environment to be used for a specific SE domain
issue. Helping software engineers choose the most suitable ML environment according to their needs would
be very helpful. For instance, it is possible to automate software tests using ML models, where the model
learns software behavior and predicts possible problems in the code. In this paper, we present a mapping study
that categorizes the ML techniques and tools reported as useful to solve SE domain issues. We found that
the most used algorithm is Naı̈ve Bayes and that WEKA is the tool most SE researchers use to perform ML
experiments related to SE. We also identified that most papers use ML to solve problems related to SE quality.
We propose a categorization of the ML techniques and tools that are applied in SE problem solving, linking
with the Software Engineering Body of Knowledge (SWEBOK) knowledge areas.

1 INTRODUCTION

Machine Learning (ML) is an Artificial Intelligence
(AI) sub-field composed of several algorithms for
approximating patterns in data discovery (Mitchell,
1997). ML-based systems learn from experience, and
its algorithms have proved to be of great practical im-
portance to automate several Software Engineering
(SE) tasks, such as refactoring (Kumar et al., 2019),
software defects detection (Al-Nusirat et al., 2019),
and effort estimation (Choetkiertikul et al., 2018).

SE projects are highly complex and often unpre-
dictable because they depend on interrelated factors
to succeed (De Rezende et al., 2018). Mostly, soft-
ware development projects depend on people and the
tools they have to work. As we know, human actions
are subject to failure, mainly because of the inherent
differences related to knowledge and experience (Anu
et al., 2018).

The unpredictability inherent to software projects
can lead to time-wasting, mostly related to re-
work (Sedano et al., 2017), which increases the
project cost. There are a lot of SE tasks that can be

a https://orcid.org/0000-0002-2567-2570
b https://orcid.org/0000-0002-4022-0142
c https://orcid.org/0000-0002-4071-3246
d https://orcid.org/0000-0003-3351-4916

automated to reduce human effort and project cost.
However, to automate these tasks using ML, we need
to have the SE project’s data to explore. Fortunately,
there is a vast amount of software project data avail-
able in public repositories. This data can be widely
used to extract knowledge and improve efficiency and
quality in software development projects (Liu et al.,
2018). We can use a variety of ML techniques for
each type of SE problem. However, to effectively use
these techniques, we need to have a clear understand-
ing of what are the problems with SE, what are the
problems 5 that can be solved using ML, and what
are the techniques and tools that can be used (Zhang
and Tsai, 2003).

In this paper, we report how ML techniques and
tools are used in SE projects, according to the anal-
ysis of scientific papers. We also map the main SE
problems that are being solved using ML. To do so,
we perform a mapping study, searching for papers
in eight different electronic databases. We follow
the steps suggested by (Kitchenham and Charters,
2007), and we use PICO (Murdoch, 2018) to formu-
late the research question. Additionally, we apply
the Cohen Kappa (Landis and Koch, 1977) method
to measure and help to improve the agreement be-
tween the researchers. To reduce ambiguity and use a
well-established guide (Duarte, 2019), we adopted the

306
Borges, O., Couto, J., Ruiz, D. and Prikladnicki, R.
How Machine Learning Has Been Applied in Software Engineering?.
DOI: 10.5220/0009417703060313
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 2, pages 306-313
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



www.manaraa.com

Guide to the SWEBOK (Bourque et al., 2014) Knowl-
edge Areas (KA) to categorize SE domain issues.

We found 177 papers that present solutions based
on ML for domain issues in SE. We discovered the
most commonly used techniques, composed by algo-
rithms, libraries, and programming languages, and we
also map the tools most researchers report to use dur-
ing its experiments. We also mapped the 86 SE do-
main issues most frequently benefited from using ML.
These domains include prediction of software design
defects and failures, effort and cost estimation, and
SE requirements classification.

2 MATERIALS AND METHODS

Systematic literature reviews or mappings are often
used to structure a research area, mapping, and clas-
sifying topics to find research patterns and gaps (Pe-
tersen et al., 2015). According to (Kitchenham and
Charters, 2007), a literature mapping is composed of
three main processes, named planning, conducting,
and reporting. Each process has subsequent steps,
which we follow and present from now on.

2.1 Research Questions

We developed three Research Questions (RQ) to in-
vestigate the application of ML in SE domain issues:
RQ1: How has machine learning been used in soft-
ware engineering?
RQ2: Which software engineering domain issues can
benefit most from using machine learning?
RQ3: What computational machine learning tech-
niques and tools are most used to solve software en-
gineering problem domains?

Based on the research questions, we used the
PICO technique to elaborate the first search string,
searching for the terms (”software engineering” AND
”machine learning” AND ”tool” AND ”technique”
AND ”domain”) in the papers title, abstract, or key-
words. Using this string, we got 61 papers in the fi-
nal accepted set. Because we aim to broadly map the
literature about ML for SE, we decided to alter the
search string so that we could improve the number of
papers accepted. Then we searched only for the terms
(”software engineering” AND ”machine learning”)
in the same places. Thus, we accepted 177 papers in
the second string, 116 more than in the first one. For
this reason, we kept the results we obtained from the
second search string.

To answer RQ1, we classify the papers using two
approaches: one automatically clustering the papers
using ML and another using the SWEBOK KA. In

the first classification approach, we use ML tech-
niques to cluster the papers we accepted using Orange
tool 1. We create a Corpus containing the title, ab-
stract, and keywords and used it as input for Orange.
For text preprocessing, we use the WordNet Lemma-
tizer parameter for normalization, remove regular ex-
pressions and stopwords, select only words that are
30-90% frequency and only the 500 most frequent
tokens. Along with stopwords, we removed words
that appear in all papers and their radicals, such as
”soft”, ”softw”, ”softwar”, ”software”, ”thi”, ”use”,
”using”, ”learn”, ”learning”, ”machin”, ”machine”,
”engineer”, and ”engineering”. Then, we created a
Bag of Words and set the Document Frequency pa-
rameter to IDF (Inverse Document Frequency), which
measures the importance of a word in a given doc-
ument. We used the Silhouette coefficient from K-
means to identify an optimal amount of clusters. The
best score was 0.236 for 2 clusters. Then we use the
Cosine’s Distances to create the clusters. Lastly, we
create a Hierarchical Clustering to represent the data
visually.

Then, in our second approach, we classified the
papers manually using the ten SWEBOK KA. We use
SWEBOK used because it is a well recognized and
widely accepted standard in the SE community. Ta-
ble 1 presents the SWEBOK KA.

For answering RQ2, we consider domain issues as
the contexts and tasks in SE the papers explore, such
as software defect detection, software behavior, and
reverse engineering. To answer RQ3, we use the def-
initions of the terms provided by International Stan-
dard - Systems and software engineering – Vocabu-
lary (ISO/IEC/IEE, 2010) for the terms ”tools” and
”techniques”. According to the Standard, a tool is a
software product used to help in some activity, while a
technique is a systematic procedure or method, such
as an algorithm. Therefore, in this paper, ML tech-
niques are any algorithm or statistical methods used
to make predictions, classifications, and clustering.

2.2 Study Screening

To increase the quality of our findings, we define in-
clusion and exclusion criteria. We associate each pa-
per to at least one criterion. The papers we select
match all the following criteria:

• (I1) Qualitative or quantitative research about SE
using ML.

• (I2) Presents complete study in electronic format.
• (I3) Conference or journal paper.

1https://orange.biolab.si

How Machine Learning Has Been Applied in Software Engineering?

307



www.manaraa.com

Table 1: 10 SWEBOK (Bourque et al., 2014) Knowledge Areas (KA).

Knowledge Areas (KA) Description

1. Software Requirements Comprise requirements process, elicitation, analysis, specification, and validation.
2. Software Design Present processes to create the software structure and architecture, introduces how to create,

analyze, and evaluate user interface design.
3. Software Construction Presents tools and technologies for software development.
4. Software Testing Addresses test levels, tools, techniques, processes, and test-related measures.
5. Software Maintenance Comprise processes, techniques, and main issues related to software development mainte-

nance.
6. Software Configuration
Management

Presents how to plan and control the software development environment.

7. Software Engineering
Management

Introduces processes related to software project management, such as planning, scope defi-
nition, enactment, review and evaluation, closure, and how to measure the project progress.

8. Software Engineering
Process

Addresses process definition, software life cycles, how to asses and improve software
projects, and tools to be used in the SE process.

9. Software Engineering
Models and Methods

Presents the types of models, how to analyze the models, and SE methods, such as heuristic,
formal, prototyping, and agile.

10. Software Quality Introduces processes to manage and maintain the software quality process.

Table 2: Number of papers rejected due to exclusion crite-
ria.

Exclusion Criteria Amount

(E1) Short paper (6 3 pages) 28
(E2) Paper is unavailable for download 4
(E3) Paper non matching at least one
RQ

451

(E4) Duplicate paper 0
(E5) Written in a language other than
English

1

(E6) Conference proceedings index 100
(E7) Book or book chapter 24
(E8) Literature Review or Mapping 5

We started the study having 1314 papers to ana-
lyze. For all papers, we read the title, abstract, and
keywords. From the 1314 papers, 522 are duplicated,
and we accepted 177 papers in the final set. Among
the 613 remaining papers we reject, they match at
least one of the criteria described in Table 2.

We used the Cohen Kappa method to improve
the quality of the results and measure the level of
agreement among the researchers. To do so, two
researchers analyzed separately a sample containing
140 (10%) of the 1314 papers. We performed four
reviews iterations, having 35 papers double-analyzed
in each iteration. After each cycle, we discussed the
papers where we had a different opinion about accept-
ing or rejecting until we reach an agreement. Table 3
presents Kappa values. At the end of the fourth re-
view cycle, we reached an almost perfect agreement,
which suggests that researchers are aligned and can
follow screening the papers independently.

We use StArt (State of the Art through systematic

Table 3: Kappa results, based on (Landis and Koch, 1977).

Kappa values Agreement 1st 2nd 3rd 4th

<0 Poor
0 - 0.20 Slight
0,21-0,40 Fair 0.38 0.27
0,41-0,60 Moderate 0.55
0,61-0,80 Substantial
0,81-1 Almost

perfect
0.82

review)2 to assist us in the data extraction phase. Af-
ter completing data extraction using StArt, we export
the results to a Google Sheets, so that we can col-
laboratively analyze the data. At the end of this pro-
cess, we accept a set containing 177 accepted articles,
which are in our Technical Report (TR) (Borges et al.,
2020).

3 RESULTS

In this section, we present how we classify the 177 pa-
pers we accepted, and also the data we extracted from
the papers. We applied the search string in July/2019
on the following web search engines: ACM, IEEE,
Springer, arXiv, Science Direct, Web of Science,
Google Scholar, and Scopus. We do not limit the
years to retrieve the papers because we want to un-
derstand how this area developed since the beginning.
Table 4 presents the amount of papers per database.
Scopus is the search engine that returned most pa-
pers because it indexes multiple databases, although

2Available at http://lapes.dc.ufscar.br/tools/start tool

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

308



www.manaraa.com

more than half the papers we accepted are from IEEE
and ACM. We have to mention that regarding the pre-
sented percentages of domains, techniques, and tools,
some papers presented more than one of the items,
so the sum of the percentage is always greater than
100%, for all the answers.

3.1 Data Extraction

We thoroughly read the 177 papers so that we could
analyze and classify them. We retrieved 113 jour-
nals and 64 papers published in conferences/events.
The oldest ones are from 1992 and 1993, written by
the same authors, Lionel C. Briand, Victor Basili, C.
J. Hetmanski, and W. Thomas. The papers [R29,
R28, R30] use a Decision Tree-based approach to Op-
timized Set Reduction (OSR) for SE data analysis.
These papers perform software cost estimation and
failure classification in software projects and software
components. Since then, the number of related papers
has remained stable until 2008. In 2009, there was a
growth in publications related to the use of ML tech-
niques in SE, reaching a peak of 42 papers in the year
2018. This scenario shows that the use of ML tech-
niques in SE is feasible and quite useful for solving
significant problems in the area due to its diversity of
available applications.

3.2 Classification Schema

We created a schema to present our results. We divide
the schema according to each research question. We
now present the resulting analysis and how we answer
each research question.

RQ1: How has Machine Learning been used in
Software Engineering? Using ML, we create two
hierarchical clusters (Figure 1), setting Ward as the
Linkage parameter. A hierarchical clustering diagram
is a form of visualization that unifies the most related
to the least related items. The weighted link used by
the Orange tool to create hierarchical clustering is the
WPGMA (Weighted Pair Group Method with Averag-
ing) method, as described in (Dubes and Jain, 1988).
In this paper, the diagram presents the grouping of the
most related papers. Initially, it unifies in pairs that re-
late more strongly and from this union, will be united
with the other papers. In one example, papers R80
and R58 initiate a cluster within Cluster 01. Both pa-
pers deal with software effort estimation. From this
union, the remaining papers are grouped by similarity
of this context. Below we describe the clusters.

A) Cluster 1 - 122 Papers
Most frequent terms: model (248), prediction (221),
project (206), data (197), technique (187), based

Table 4: Papers per electronic databases.

Source Initial Selection Accepted

Scopus 395 30 17 papers
IEEE Xplore 307 115 62 papers
Web of Science 283 61 35 papers
ACM 158 66 32 papers
Springer 69 14 5 papers
arXiv 42 18 7 papers
Science Direct 42 21 19 papers
Google Scholar 18 3 0 papers

1314 328 177 papers

(138), and result (136).
Most papers in Cluster 1 are related to the Soft-

ware Quality KA (66 papers) and Software Engineer-
ing Management (40 papers). The most mentioned
context in these papers is defect/bug prediction (25
papers), and the ML technique most used is LR (40
papers). WEKA is the most used tool (38 papers).

B) Cluster 2 - 55 Papers
Most frequent terms: approach (114), based (73),
system (73), model (47), technique (45), analysis (42),
and problem (39).

Papers in Cluster 2 are mainly about Software
Quality (25 papers), and Software Test (15 papers).
Once again, WEKA is the most frequently used tool
(18 papers). NB is the most used ML technique (16
papers) to solve problems in the defect classification
context (6 papers).

Cluster 1 contains the papers most related to pre-
diction, while Cluster 2 has the most related to clas-
sification. We found that the word predict appears
392 times, considering all 177 papers. It suggests that
most papers work to address problems in SE using
prediction techniques. The word defect appears 199
times, which is consistent with software defect being
the most common reported domain issue.

In the second paper classification approach we
adopted, we link the ML tools and techniques to the
SE domain. To do so, we use the ten SWEBOK KA
presented in Table 1. We present the results in de-
scending order, according to the number of papers:

• Software Quality: 91 papers: [R1, R3, R4, R7,
R11, R19-R21, R23-R25, R28, R30, R32, R35,
R36, R40, R45, R48-R54, R56, R57, R61-R65,
R68, R70, R71, R74-R78, R80-R86, R89, R90,
R91, R96, R97, R99, R101, R102, R104, R107,
R108, R110, R112, R115, R116, R120, R121,
R125, R127-R132, R136-R138, R144, R146,
R148, R149, R151, R156, R157, R159, R161,
R164-R166, R169-R171, R174, R176].

• Software Engineering Management: 46 papers:

How Machine Learning Has Been Applied in Software Engineering?

309



www.manaraa.com

(a) Cluster 1

(b) Cluster 2

Figure 1: Clustering of papers.

[R2, R10, R13, R15-R17, R20, R29, R31, R36,
R39-R42, R46, R47, R55, R60, R66, R67, R72,
R83, R89, R92-R94, R96, R98, R103, R112,
R114, R122, R123, R126, R129, R140, R141,
R143, R147, R152-R155, R162, R163, R175].

• Software Testing: 28 papers: [R5, R6, R19, R24,
R27, R28, R40, R43, R58, R61, R63, R69, R78,
R87, R91, R100, R105, R134, R135, R137-R139,
R157, R160, R165, R168, R171, R177].

• Software Engineering Models and Methods:

22 papers: [R6, R22, R28, R42, R55, R62, R69,
R72, R73, R106, R108, R110, R111, R117, R118,
R120, R139, R152, R165, R170, R172, R175].

• Software Configuration Management: 15 pa-
pers: [R2, R12, R37, R44, R54, R70, R111, R113,
R124, R142, R158, R167, R172, R173, R18].

• Software Maintenance: 13 papers [R8, R33,
R50, R51, R52, R57, R81, R88, R102, R115,
R139, R166, R170].

• Software Requirements: 8 papers: [R9, R41,
R79, R109, R114, R117, R121, R150].

• Software Engineering Process: 8 papers: [R14,
R38, R46, R90, R95, R123, R145, R169].

• Software Design: 6 papers [R34, R40, R79,
R117-R119].

• Software Construction: 2 papers [R76, R167].

During the classification process, we identify that
more than half of the papers discuss the use of ML for
Software Quality (52%). The second KA most bene-
fited from ML is Software Engineering Management
(26%), followed by Software Testing (16%).

RQ2: Which Software Engineering Domain Is-
sues can Benefit most from using Machine Learn-
ing? We analyze the papers and identify 86 differ-
ent domains. The 8 most frequent domains were:
Software Defect (56 papers), Software Effort (16 pa-
pers), Bug Report (6 papers), Risk Management (5
papers), Software Cost (4 papers), Software Require-
ments (4 papers), Source Code Refactoring (4 pa-
pers), and Change Prone Parts (4 papers). We high-
light the three most frequent ones:

• Software Defect (31%): the papers we classify
in the software defect domain present the use
of ML for bug classification, prediction, and re-
trieval. Papers: [R3, R7, R10, R11, R20, R21,
R23, R24, R28, R35, R49, R50, R53, R54, R57,
R59, R61, R63, R64, R66, R74, R75, R78, R80,
R82, R83, R84, R85, R86, R89, R91, R99-R101,
R104, R107, R110, R112, R120, R125, R127,
R128, R130, R132, R136, R137, R138, R144,
R149, R151, R157, R161, R165, R168, R171, and
R176].

• Software Effort (9%): ML tools and techniques
used to predict software effort, helping in software
project management. Papers: [R13, R16, R20,
R67, R92, R96, R103, R140, R141, R143, R147,
R153, R154, R162, R163, and R175].

• Bug Report (3%): In the bug report domain, they
use ML for bug deduplication. Papers: [R1, R5,
R45, R148, R146, and R156].

RQ3: What Computational Machine Learning
Techniques and Tools are Most used to Solve Soft-
ware Engineering Problem Domains? From the

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

310



www.manaraa.com

7

7

7

7

8

8

9

9

13

14

18

28

29

29

31

33

40

54

57

63

0 10 20 30 40 50 60 70

OneR (OR)

Recurrent Neural Network (RNN)

Convolutional Neural Network (CNN)

Support Vector Regression (SVR)

K-Means (KM)

Boosting (Bo)

AdaBoost (AB)

Bagging (Ba)

Regression Tree (CART)

Radial Basis Function Network (RBF)

Bayes Network (BN)

Logistic Regression (LR)

Artificial Neural Network (ANN)

Decision Tree (DT)

Multi Layer Perceptron (MLP)

C4.5 (J48)

K-Nearest Neighbor (KNN)

Random Forest (RF)

Support Vector Machine (SVM)

Naive Bayes (NB)

Figure 2: 20 most frequent ML techniques used in SE do-
main.

problem domains presented, we identified 328 ML
techniques and 35 tools used to assist in solving SE
problems. We list ML techniques, as described in the
papers. Even though some techniques such as neural
networks (ANN, CNN, and RNN) and tree classifi-
cation algorithms (C4.5 (J48), DT, and CART) could
be grouped, we choose to keep the original descrip-
tions we found in the papers, to know exactly the most
used algorithms. Figure 2 presents the 20 most used
techniques and Figure 3 illustrates the 12 most used
tools. Below we list the most frequently mentioned
techniques and tools.
• Techniques/Methods:

1. Naı̈ve Bayes (Rish et al., 2001) (36% of Pa-
pers): NB is a classifier that keeps statistics
about each column of data in each class. New
examples are classified by a statistical anal-
ysis that reports the closest class to the test
case. NB classifiers are computationally ef-
ficient and tend to perform well on relatively
small datasets. Papers: [R1, R2, R3, R5, R7,
R11, R13, R14, R21, R23, R24, R31, R36-R38,
R56, R57, R60, R64, R66, R73, R74, R75,
R77, R82, R83, R88, R91, R97, R99, R100,
R102, R105, R107, R110, R111, R115-R120,
R122, R126, R128, R129, R131, R132, R142,
R145-R150, R152, R154, R155, R161, R162,
R164, R168, and R172].

2. Random Forest (Liaw et al., 2002) (30%
of Papers): RF is a joint learning process
that combines multiple weaker learners into a
stronger learner. RF have a better general-
ization and are less susceptible to overfitting
(Breiman, 2001). They can be used for classi-
fication and regression problems. Papers: [R3,

R4, R11, R13, R21, R31, R37, R39, R49, R51,
R54, R56, R57, R59, R60, R61, R62, R65,
R73, R75, R80, R82, R83, R88, R99, R100,
R102, R104, R105, R109, R110, R112, R115-
R119, R122, R123, R127, R128, R129, R131,
R132, R134, R140, R145, R148-R150, R152,
R159, and R171].

3. Support Vector Machine (Cristianini et al.,
2000) (32% of Papers): It is responsible for
creating a linear discrimination function using
a small number of critical threshold instances
(called support vectors) of each class, ensur-
ing maximum possible separation (Liu et al.,
2002). SVM is known as SMO in the WEKA
tool. Papers: [R1, R2, R4, R7, R11, R16, R22,
R24, R31, R32, R38, R42, R51, R57, R59,
R60, R61, R62, R63, R66, R67, R68, R70,
R73, R74, R77, R80, R82, R83, R84, R86,
R89, R90, R91, R94, R105, R108, R110, R111,
R115, R119, R120, R122, R124, R125, R126,
R128, R143, R145, R146, R161, R162, R164,
R165, R171, R172, R174].

• Tools:
1. WEKA (32% of Papers) (Hall et al., 2009):

WEKA is a unified work environment that
allows researchers access to ML techniques
previously implemented and easily configured.
Besides providing a learning algorithm tool-
box, WEKA also provides a framework so re-
searchers can implement new algorithms with-
out having to worry about infrastructure sup-
port for data manipulation and schema evalua-
tion. Papers: [R1- R5, R7, R10, R14, R17, R19,
R21, R23, R24, R27, R31, R34, R36, R47,
R49, R51, R53, R54, R56, R57, R64, R67,
R75, R77, R82-R86, R99-R101, R103, R109,
R110, R117-R119, R121, R124, R128, R129,
R131, R134, R135, R142, R145, R152, R154,
R155, R161, R164, and R177].

2. MATLAB (9% of Papers)3: Platform to
solve scientific and engineering problems. The
matrix-based MATLAB language serves to ex-
press computational mathematics. It is used
for ML, signal processing, image processing,
machine vision, communications, computer fi-
nance, control design, robotics, and many other
fields. Papers: [R2, R3, R8, R35, R48, R55,
R81, R85, R92, R93, R127, R140, R141, R144,
R149, and R160].

3. SCIKIT-LEARN4 (8% of Papers): A Python
module that integrates a wide range of ML al-
gorithms for medium-scale supervised and un-

3Available at: http://la.mathworks.com/
4Available at: https://scikit-learn.org/stable

How Machine Learning Has Been Applied in Software Engineering?

311



www.manaraa.com

2
2
2
2
2
2

5
8

13
16

58

0 10 20 30 40 50 60

TensorFlow
RNNLM Toolkit

RapidMiner
Mulan

libsvm library
R language
Java-based

Python
Scikit-learn
MATLAB

WEKA

Figure 3: 11 most frequent ML tools used in SE domain.

supervised problems. This package focuses on
bringing ML to non-specialists using a high-
level language for general use. Papers: [R63,
R65, R69, R73, R80, R104, R105, R115, R116,
R122, R148, R150, and R168].

On the most used tools, we found 19 papers
(11%) reporting the programming language Python
or Python-based Scikit-learn, libsvm, and TensorFlow
(R45, R51, R63, R65, R69, R73, R80, R94, R104,
R105, R115, R116, R122, R148, R150, R157, R166,
R168, R170).

4 CONCLUSION

In this paper, we presented a mapping study devel-
oped to understand how SE benefits from using ML
tools and techniques. In the final set, we accepted 177
papers that answer our research questions.

During papers’ analysis, we found more than three
hundred ML techniques, although only ten are present
in more than 10% of the papers: NB, RF, SVM, KNN,
C4.5, DT, ANN, LR, and BN. NB is used in 36% of
papers, and it is because the algorithm performs well
tasks related to text classification. NB is widely used
in SE to classify data related to source code, bugs, and
reports. All top 10 algorithms are classifiers or classi-
fiers/regression, and they are in the supervised learn-
ing paradigm. Thence, we noticed there is an oppor-
tunity to expand the exploration of unsupervised and
reinforcement learning techniques for the SE domain.

We identify 35 different ML tools in 111 papers,
being WEKA the most used. According to a survey
performed by Kaggle5, Python is the most recom-
mended programming language for data science (75%
of respondents). In our study, we found Python or
Python-based tools in 11% of papers. As 67 papers
do not mention the used tools, this number could be

5Available at https://www.kaggle.com/kaggle/kaggle-
survey-2018

bigger. The papers that present ML techniques (37%),
but not the tools, libraries, and frameworks make
it difficult to replicate the experiments presented, as
well as to understand the environment configuration.

We also cluster the papers using ML to identify
and rank the most similar papers in terms of content.
We identify two hierarchical clusters, one focused on
prediction (69%) and the other on classification (31%)
tasks. The word predict is the most frequent in all
papers, which leads us to conclude that ML is mainly
used to make predictions in SE. We also found that
Software Quality is the most frequent SWEBOK KA
target for both clusters (51%).

ML provides a set of advantageous features for
software quality assessment and prediction. One of
the most common ways to analyze quality is through
the use of software metrics. They assist in decision
making and serve as input to ML models to propose
predictions or ratings about software quality. In this
sense, we find that DT, NN, NB, and Classification
and Regression Tree algorithms are most used for cre-
ating models for design artifacts prediction. Quality
analysts use these models to measure design artifacts
to assist in quality assessment early in the develop-
ment process. With these models, it is possible to gen-
erate a more objective and automated project quality
assessment. Project metrics are also used in quality
prediction, generating models from DT, RF, LR, and
NB algorithms. However, to speed up the models, the
input metrics need to be specific to a particular project
context, which is the case of the prediction of the fail-
ure propensity of specific modules of the software. As
a result of this type of forecasting, the test analyst can
predict software quality even before implementation.

Being a qualitative research, our paper has some
limitations. To minimize the risk of not having a
broad and diverse range of documents, we conducted
our research on eight popular web search engines.
However, this is not a guarantee that all events and
magazines in the area are covered. The fact that pa-
pers that work on related topics appear in different
locations may lead to different results. In the selec-
tion phase, we did not delimit an initial year for the
papers, so it could bring tools and techniques that are
no longer being used. Since we wanted to map ML
to SE from the beginning, it was an acceptable limi-
tation, but to ensure exciting results, we also looked
at the algorithms described in new papers since 1992
as OSR, and are still used in recent papers. We apply
the Kappa method to improve agreement and reduce
interpretability bias. Two researchers worked in par-
allel, and we had two other researchers to discuss in
case of disagreement.

For future work, we want to map the challenges

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

312



www.manaraa.com

related to using ML in SE projects. We also sug-
gest exploring the use of ML in areas that are little
explored, such as Software Construction (1%), Soft-
ware Design (3%), Software Requirements (5%), and
Software Engineering Process (5%). Additionally, we
suggest there is an opportunity to increase the appli-
cation of reinforcement and unsupervised learning for
SE tasks.

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nivel Superior –
Brasil (CAPES) – Finance Code 001. This work is
partially funded by FAPERGS (17/2551-0001/205-4)
and CNPq.

REFERENCES

Al-Nusirat, A., Hanandeh, F., Kharabsheh, M., Al-Ayyoub,
M., and Al-dhufairi, N. (2019). Dynamic detection of
software defects using supervised learning techniques.
Int. Journ. of Comm. Net. and Info. Secy., 11:185–191.

Anu, V., Hu, W., Carver, J. C., Walia, G. S., and Bradshaw,
G. (2018). Development of a human error taxonomy
for software requirements: a systematic literature re-
view. Info. and Soft. Technol., 103:112–124.

Borges, O., Couto, J., Ruiz, D., and Priklad-
nicki, R. (2020). Technical report - how ma-
chine learning has been applied in software
engineering? https://figshare.com/articles/
TR-MUNDDOS-2020 ICEIS Olimar pdf/11874231.

Bourque, P., Fairley, R. E., et al. (2014). Guide to the soft-
ware engineering body of knowledge (SWEBOK (R)):
Version 3.0. IEEE.

Breiman, L. (2001). Random forests, machine learning 45.
Journ. of Clinical Microbiology, 2:199–228.

Choetkiertikul, M., Dam, H. K., Tran, T., Pham, T. T. M.,
Ghose, A., and Menzies, T. (2018). A deep learn-
ing model for estimating story points. IEEE Trans. on
Soft. Eng., 45:637–656.

Cristianini, N., Shawe-Taylor, J., et al. (2000). An intro-
duction to support vector machines and other kernel-
based learning methods. Cambridge university press.

De Rezende, L. B., Blackwell, P., and Pessanha Goncalves,
M. D. (2018). Research focuses, trends, and major
findings on project complexity: a bibliometric net-
work analysis of 50 years of project complexity re-
search. Proj. Mgmt. Journ., 49:42–56.

Duarte, C. H. C. (2019). The quest for productivity in
software engineering: A practitioners systematic lit-
erature review. In Int. Conf. on Soft. and Syst. Proc.,
pages 145–154. ACM.

Dubes, R. C. and Jain, A. K. (1988). Algorithms for clus-
tering data.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The weka data mining
software: an update. SIGKDD Explor. Newsletter,
11:10–18.

ISO/IEC/IEE (2010). Iso/iec/ieee international standard
- systems and software engineering – vocabulary.
ISO/IEC/IEEE 24765:2010(E), pages 1–418.

Kitchenham, B. and Charters, S. (2007). Guidelines for
performing systematic literature reviews in software
engineering. Technical Report EBSE-2007-01, Dep.
Comp. Sci, University of Durham, Durham, UK.

Kumar, L., Satapathy, S. M., and Murthy, L. B. (2019).
Method level refactoring prediction on 5 open source
java projects using machine learning techniques. In
Innov. on Soft. Eng. Conf., page 7. ACM.

Landis, J. R. and Koch, G. G. (1977). The measurement of
observer agreement for categorical data. Biometrics,
33:159–174.

Liaw, A., Wiener, M., et al. (2002). Classification and re-
gression by randomforest. R news, 2:18–22.

Liu, B.-B., Dong, W., and Wang, J. (2018). Survey on in-
telligent search and construction methods of program.
Journ. of Soft., 29:2180–2197.

Liu, H., Li, J., and Wong, L. (2002). A comparative study
on feature selection and classification methods us-
ing gene expression profiles and proteomic patterns.
Genome Inform., 13:51–60.

Mitchell, T. (1997). Machine Learning. McGraw-Hill.
Murdoch, U. (2018). Systematic reviews: Using pico or

pico. https://goo.gl/fqPoCY. Accessed: 2018-12-20.
Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015).

Guidelines for conducting systematic mapping stud-
ies in software engineering: An update. Info. and
Soft.Technol., 64:1 – 18.

Rish, I. et al. (2001). An empirical study of the naive bayes
classifier. In Wksh. on Emp. Meth. in AI, pages 41–46.
CiteSeer.

Sedano, T., Ralph, P., and Péraire, C. (2017). Software de-
velopment waste. In Int. Conf. on Soft. Eng., pages
130–140. IEEE.

Zhang, D. and Tsai, J. J. (2003). Machine learning and
software engineering. Soft. Qual. Journ., 11:87–119.

How Machine Learning Has Been Applied in Software Engineering?

313


